

AVR32105: Master and Slave SPI Driver

Features
- Four chip selects with external decoder support allow communication with up to

15 peripherals
- Four chip select registers allowing up to four different slave setups in master

mode
- Supports a wide range of devices

• Serial memories, such as DataFlash® and 3-wire EEPROMs
• Serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers

and Sensors
• External Co-processors

- Master or slave serial peripheral bus interface
• 8- to 16-bit programmable data length per chip select
• Programmable phase and polarity per chip select
• Programmable transfer delay between consecutive transfers and between

clock and data per chip select
• Programmable delay between consecutive transfers
• Selectable Mode Fault detection

- Connection to PDC Channel capabilities optimizes data transfers
• One channel for the receiver, one channel for the transmitter
• Next buffer support

1 Introduction
A Serial Peripheral Interface (SPI) bus is a synchronous serial data link capable of
full-duplex communication with external devices in master or slave mode.

Figure 1-1. Example SPI application

The SPI can be used for various purposes from communicating with peripheral to
other processors. SPI transfer is built up of one master and one to several slaves,
each slave addressable by using a dedicated chip select line. There can only be
one master at a time, but the SPI controllers can take turn being masters (multiple
master protocol).

32-bit
Microcontrollers

Application Note

Rev. 32017A-AVR32-05/06

2 AVR32105
32017A-AVR32-05/06

2 Functional description

2.1 Electrical interconnection
The SPI bus consists of two data lines, a clock line, and a number of slave select
control lines. One of the data lines, MISO (master in, slave out), is used for
transmission from the slave to the master, the other, MOSI (master out, slave in), is
used for transmission from the master to the slave. Thus the communication is full
duplex. The master also controls the clock line, SPCK, and the slave select control
lines, NPCSn. When the master wishes to communicate with one of the slaves, the
slave select line of that slave is driven low.

Figure 2-1. Block diagram

1. N = 32

 AVR32105

 3

32017A-AVR32-05/06

2.2 SPI registers
Each SPI module is memory mapped to a base address, with the registers accessible
by an offset from the base. Se Table 2-1 for an example from AP7000 SPI module.

Table 2-1. SPI register mapping for AP7000
Offset Register Register name Access Reset

0x00 Control register CR Write-only ---

0x04 Mode register MR Read/write 0x0

0x08 Receive data register RDR Read-only 0x0

0x0C Transmit data register TDR Write-only 0x0

0x10 Status register SR Read-only 0x000000F0

0x14 Interrupt enable register IER Write-only ---

0x18 Interrupt disable register IDR Write-only ---

0x1C Interrupt mask register IMR Read-only 0x0

0x20-0x2C Reserved

0x30 Chip select register 0 CSR0 Read/write 0x0

0x34 Chip select register 1 CSR1 Read/write 0x0

0x38 Chip select register 2 CSR2 Read/write 0x0

0x3C Chip select register 3 CSR3 Read/write 0x0

0x40-0xF8 Reserved

0xFC Version register VERSION Read-only

0x100-0x124 PDC registers

2.3 Modes of operation
The SPI controller has two modes of operation, master or slave mode. This is
selected with the MSTR bit in the mode register. In master mode the SPI controls the
communication between the master and the slaves, while in slave mode the slave is
enabled by the chip select pin is pulled low.

See Table 2-2 for a description of port directions in the different modes.

Table 2-2. Signal description
Type

Pin name Pin description Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1-NPCS3 Peripheral Chip Select Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

4 AVR32105
32017A-AVR32-05/06

Figure 2-2 shows an application block diagram where a master drives multiple slaves.

Figure 2-2. Application block diagram

For more details about master mode see chapter 2.5 page 6, and for slave mode see
chapter 2.6 page 8.

2.4 Transfer format
The SPI transfers data in blocks, ranging from 8 to 16 bits. There is no
acknowledgement or error control on the transfers. Transfers and receives occur
simultaneously, so when a block is shifted out (transferred) a block is shifted in
(received), allowing full duplex transfers.

The transfer signal can be programmed in four different modes by changing clock
phase and clock polarity. Changing the CPOL bit for polarity and NCPHA bit for
phase in the chip select register (SCRn) does this. The master and the slave must
have the same polarity and phase to be able to communicate.

The table below shows the four modes and corresponding parameter settings. The
figures on page 5 shows examples of data transfer modes.

Table 2-3. SPI Bus Protocol Mode
SPI mode CPOL NCPHA Leading edge Trailing edge

0 0 1 Sample (rising) Setup (falling)

1 0 0 Setup (rising) Sample (falling)

2 1 1 Sample (falling) Setup (rising)

3 1 0 Setup (falling) Sample (rising)

 AVR32105

 5

32017A-AVR32-05/06

Figure 2-3. SPI transfer format (NCPHA = 1, 8 bits per transfer)
6

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined, but normally MSB of previous character received.

1 2 3 4 5 7 86

Figure 2-4. SPI transfer format (NCPHA = 0, 8 bits per transfer)

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

* Not defined but normally LSB of previous character transmitted.

2

2

6

6 AVR32105
32017A-AVR32-05/06

2.5 Master mode operations
When in master mode the SPI drives the SPCK pin, the MOSI pin is wired to the
transmitter output and the MISO pin is wired to the receiver input. NPCS0 to NPCS3
is used as outputs to enable the slave devices.

The baud rate is programmable in the SPI controller by setting the SCBR field in the
chip select register (CSRn) for the slave device the master is communicating with.

Data is transferred to the slaves by pulling a chip select pin (NPCSn) for a slave low
and shift data out of the shift register. The master will while shifting out data sample
the data from the MISO pin into the shift register.

Selecting slave devices can be done in two ways; either fixed peripheral select mode
or variable peripheral mode is used. This is selected with the PS field in the mode
register (MR). If variable mode is used each transfer has to specify which slave is
being addressed, while fixed mode sets the chip select in the mode register (MR) field
PCS.

Data transfers are initialized by writing data to the transmit data register (TDR). After
the transfer is complete the received data will be available in the receive data register
(RDR). Transfer only start if a valid chip select is set.

Several status bits are available in the status register (SR):

• Transmit data register empty (TDRE) is cleared when there is data in TDR;
this bit is used when PDC is enabled.

• Transmission registers empty (TXEMPTY) is cleared when there is data in
TDR, the shift register or when the SPI is delaying after a transfer.

• Receive data register full (RDRF) is set when there is data available in RDR.

• Overrun error status (OVRES) is set when the RDR was load twice since the
last read of RDR.

• Mode fault error (MODF) is set when a mode fault is discovered while
transferring data, for more details see chapter 2.5.4 on page 8.

2.5.1 Clock generation

The SPI clock to the module can use the peripheral clock as main clock (MCK)
directly or it can divide this clock by 32; this is done with the mode register bit FDIV.
Further the SPI can divide the main clock into a wide range of values by setting the
SCBR field in the chip select register (CSRn). The SCBR field can be a value
between 2 and 255, and is set individual for each of the four chip selects.

This allows a maximum operating baud rate at up to MCK/2 and a minimum operating
baud rate of MCK/(32 * 255). The highest baud rate is MCK/2 because programming
the divider to 0 is forbidden, and will lead to unpredictable results.

 AVR32105

 7

32017A-AVR32-05/06

2.5.2 Transfer delays

Three delays can be programmed to modify the transfer waveforms:

• The delay between a chip disable and the next chip select, programmable
only once for all the chip selects by writing the DLYBCS field in the mode
register. Allows insertion of a delay between release of one chip select and
before assertion of a new one.

• The delay before the SPI clock, SPCK, is sourced to a slave, independently
programmable for each chip select by writing the field DLYBS. Allows the
start of SPCK to be delayed after the chip select has been asserted.

• The delay between two consecutive transfers, independently programmable
for each chip select by writing DLYBCT field. Allows insertion of a delay
between two transfers occurring on the same chip select.

These delays allow the SPI to be adapted to the interfaced peripheral and their speed
and bus release time.

Figure 2-5. Programmable delays

DLYBCS DLYBS DLYBCT DLYBCT

Chip Select 1

Chip Select 2

SPCK

2.5.3 Peripheral selection

When operating in master mode the SPI can select slaves by pulling the NPCSn pins
to ground. By default, all the chip select pins are high until a transfer begins. The SPI
can be programmed to have a fixed chip select or a variable chip select. This is
programmed with the PS bit in the mode register (MR). The SPI can also be
programmed to use an external chip select decoder by programming the PCSDEC bit
in the mode register (MR).

The SPI use the corresponding chip select register (CSRn) when data is transferred
to a slave. For example if chip select 2 is programmed into the PCS field the setup
defined in CSR2 will be used.

2.5.3.1 Fixed chip select

When fixed peripheral select is programmed in the SPI mode register (MR) bit PS, the
slave is selected by setting the PCS field in MR. When entering data into the TDR the
PCS field in TDR is ignored and the PCS field in the MR is used.

It is possible for the programmer to let the chip select signal be low during an entire
transfer by setting the CSAAT bit in the chip select register (CSRn). The programmer

8 AVR32105
32017A-AVR32-05/06

can then set the LASTXFER bit in the transmit data register (TDR) when the last
transfer to the slave is written to TDR.

2.5.3.2 Variable chip select

When variable peripheral select is programmed in the SPI mode register (MR) bit PS,
the slave is selected by setting the PCS field each time data is written to the transmit
data register (TDR).

2.5.3.3 Peripheral select decoding

The SPI can be set in a mode to operate up to 15 slaves by using external logic on
the four chip select lines. Enabling this mode is done with the PCSDAC bit in the
mode register (MR).

When operating without decoding the SPI have features allowing only one chip select
to be active at any time. For example if several bits are set low in PCS field, only the
lowest chip select is driven low.

When operating with decoding the SPI activates the chip select pins given by the
PCS field, allowing up to 15 slaves to be accessed, because the default value 0xF is
used when no slaves are activated.

The chip select registers now handle a group of chip select signals, since there is only
four chip select registers. The programmer has to take care to only connect
compatible slaves to each group.

The chip select registers are connected to the following chip select values:

• CSR0 handles PCS values 0 to 3

• CSR1 handles PCS values 4 to 7

• CSR2 handles PCS values 8 to 11

• CSR3 handles PCS values 12 to 14

2.5.4 Mode fault detection

The SPI has a capability to detect mode faults, which is turned on by default. Mode
fault is triggered when the SPI is in master mode and an external device drives the
NPCS0 signal low.

When a mode fault is detected, the MODF bit in the system register (SR) is set until
the system register (SR) is read and the SPI is automatically disabled until re-enabled
by writing the SPIEN bit in the control register (CR).

It is considered good design to connect a pull up resistor or use the internal pull up if
available on the NPCS0 line. This will not trigger false fault error caused by noise on
the NPCS0 line.

The mode fault detection is programmable by changing the MODFDIS bit in the mode
register (MR).

2.6 Slave mode operations
When in slave mode the SPI uses NPCS0 as input for triggering chip select. The
MISO pin is wired to the transmitter output and the MOSI pin is wired to the receiver
input. SPCK is driven by the master and used to synchronize transmission of data.

 AVR32105

 9

32017A-AVR32-05/06

A transfer is trigger by the chip select (NSS) pin driven low. When clock is received
on the SPCK pin the data in the shift register is shifted out on the MISO pin. At the
same time data received on the MOSI pin is sampled into the shift register. When a
transfer is complete the data from the receive shift register is moved into the receive
hold register (RHR) and appropriate status bits are set in the status register (SR).

If the transmit data register (TDR) is not updated since the last receive, the SPI will
shift out the last received data on the MISO pin. If the SPI has not received any data
since a reset, zeros will be transferred to the master.

If the transmit data register (TDR) is updated the data will be loaded immediately into
the shift register, ready to be transmitted when the chip select line is driven low and
SPCK starts. If new data is written to TDR it will remain in TDR until the data in the
shift register has been transferred. This allows fast updates for single transfers.

3 Implementation

3.1 Driver files
The driver consists of two files “spi.c” and “spi.h”. Where “spi.h” declares all functions
and “spi.c” contains the source code. The only change needed in the driver is
specifying which device the driver is to be targeted.

Target is specified at the top in “spi.h”.

3.1.1 Master mode

Before a transfer can start, the SPI has to be initialized. To conduct a transfer as the
master, several functions have to be called. spi_initMaster() initializes a SPI in master
mode. This function, like all other, need a SPI handle that tells it which SPI instance
to operate on. spi_getHandle() will return the appropriate handle when called with the
number as argument.

When master mode has been selected, spi_selectChip() and spi_setupChipReg()
must be run. The first selects a slave chip to communicate with, while the second sets
options for the communication (like baudrate, number of bits in a transferred block,
SPI mode, etc.). spi_selectionMode() could also be called if the way slaves are
selected should be changed. When everything is correctly set up, spi_enable() should
be called.

Figure 3-1 shows the flow an example initialization and usage of the SPI in master
mode. The spi_getHandle() function call is not mandatory, but recommended for more
portable code.

After the SPI is initialized, the functions spi_write() and spi_read() can be used. The
driver is implemented by polling the SPI, thus both spi_write() and spi_read() function
has an active waiting timeout.

10 AVR32105
32017A-AVR32-05/06

Figure 3-1. Master mode example flow chart

spi_getHandle

spi_setupChipReg

spi_enable

spi_write spi_read

spi_initMaster

spi_getHandle

spi_selectChip

3.1.2 Slave mode

As the master will control most aspects of a transmission, a SPI in slave mode will not
take many options. spi_initSlave() and spi_enable() are the only functions needed to
initialize the SPI.

Figure 3-2 shows the flow an example initialization and usage of the SPI in slave
mode. The spi_getHandle() function call is not mandatory, but recommended for more
portable code.

After the SPI is initialized, the functions spi_write() and spi_read() can be used. The
driver is implemented by polling the SPI, thus both spi_write() and spi_read() function
has an active waiting timeout.

The function spi_readRegisterFullCheck() can be used for checking if there is new
data in the receive register. This call can then again be used in an active wait loop.

Figure 3-2. Slave mode example flow chart

spi_getHandle

spi_initSlave

spi_enable

spi_write

spi_read

spi_readRegisterFull
Check ?

return 0

return 1

 AVR32105

 11

32017A-AVR32-05/06

3.2 Example code
The example application does a communication between two SPI capable devices.
There should be one master and one slave. The master will then send a text string to
the slave device, which it receives and compares with an expected string.

The STK1000 development kit is used to be able to output debug information on
LEDs and get input from the user by using the switches.

Figure 3-3 shows the flow of the example application. The application is implemented
by polled function calls to make it less dependable of other modules.

For detailed explanation please see the Doxygen documentation.

Figure 3-3. Example code flow chart

init_sla
ve

SW7
pressed?

masterMode
=1
?

init_mast
er

init_sla
ve

masterMode
=1
?

spi_readRegis
terFullCheck
?

SW5
pressed?

SW4
pressed?

SW3
pressed?

spi_masterSe
ndtextStringToLo
ng

spi_masterSe
ndtextStringA
lt

spi_masterSe
ndtextStrin
g

spi_slaveRece
iveAndCompa
re

ye
s

n
oye

s

n
o

return
0

return
1

ye
s

n
o

ye
s

n
o

ye
s

n
o

ye
s

n
o

3.3 Doxygen documentation
All source code is prepared for doxygen automatic documentation generation.
Premade doxygen documentation is also supplied with the source to this application
note, located in src/doxygen/index.html.

Doxygen is a tool for generating documentation from source code by analyzing the
source code and using known keywords. For more details see
http://www.stack.nl/~dimitri/doxygen/.

12 AVR32105
32017A-AVR32-05/06

4 Further reading

4.1 Peripheral DMA Controller (PDC)
The SPI bus is able to transfer data at a fairly high rate. Thus the one-block buffers
will be filled/emptied very often, which again translates to many interrupts to the CPU.
As a result the SPI module would take a large share of the CPU time, at the cost of
other tasks.

The solution to this problem is to use the peripheral DMA controller, PDC. This
controller can be given a transmit buffer with data to transmit and a receive buffer to
put received data. In addition, it can be given pointers to a second transmit and
receive buffer, and it will automatically switch buffers when it need to. Depending on
how the SPI is configured, interrupts to the CPU can be sent when first TX buffer is
empty, first RX buffer is full, when both TX buffers are empty, and/or when both RX
buffers are full. The per block transferred interrupts are avoided, and only a fraction of
the CPU time is used on the transfer.

For more information about the peripheral DMA controller see application note
AVR®32108 - Peripheral Direct Memory Access Driver.

4.2 Interrupt
The SPI interface has an interrupt line connected to the interrupt controller (IC).
Handling the SPI interrupt requires programming the IC before configuring the SPI.

For more information and details about the interrupt controller see application note
AVR32101 – The AVR32 Interrupt Controller.

32017A-AVR32-05/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and DataFlash®, are
the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Functional description
	2.1 Electrical interconnection
	2.2 SPI registers
	2.3 Modes of operation
	2.4 Transfer format
	2.5 Master mode operations
	2.5.1 Clock generation
	2.5.2 Transfer delays
	2.5.3 Peripheral selection
	2.5.3.1 Fixed chip select
	2.5.3.2 Variable chip select
	2.5.3.3 Peripheral select decoding

	2.5.4 Mode fault detection

	2.6 Slave mode operations

	3 Implementation
	3.1 Driver files
	3.1.1 Master mode
	3.1.2 Slave mode

	3.2 Example code
	3.3 Doxygen documentation

	4 Further reading
	4.1 Peripheral DMA Controller (PDC)
	4.2 Interrupt

